11

Advanced Maths Test I \& II

MODEL PAPERS

Class: IX

EAUROMET
Hyderabad | India

Eduranet Intellectual Olympiad Foundation

10-3-304/A/2,
Humayun Nagar,
Hyderabad-500 028.
Andhra Pradesh, India.

Phone : 040-23530999

Eduranet is a registered trademark of Eduranet Educational Services (P) Ltd., in India.
(C) Copyrights - Eduranet Intellectual Olympiad Foundation 2010

First Published - 2012
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing, of Eduranet Intellectual Olympiad Foundation.

ISBN - 81-89528-03-3

SYLLABUS

1. Number Systems
2. Polynomials
3. Coordinate Geometry
4. Linear Equations in Two Variables
5. Introduction to Euclid's Geometry
6. Lines and Angles
7. Triangles
8. Quadrilaterals,
9. Area of Parallelograms and Triangles
10. Circles
11. Constructions
12. Heron's Formula
13. Surface Area and Volumes
14. Statistics
15. Probability

TABLE OF CONTEIYTS

1) Advanced Maths Test - I 5-20
2) Advanced Maths Test - II 21-32

ADVANCED MATHS TEST-I

Code:1191 PRELIMS
Max. Marks : 75
Duration : 75 Mins.

General Instructions :

1. Please find the Answer Sheets (OMR) with in the envelop given to you.
2. Mention your Test Code, Student ID, Name, Class, Section and School Name on the OMR Sheet as per Question Paper and Hall Ticket.
3. This question paper contains 75 Questions, duration is 75 minutes.
4. Do rough work in the empty sheet provided along with this question paper.
5. Answer questions in OMR sheet only.
6. Don't write or tick anything on the question paper.
7. Use only Black or Blue Ball Point Pen or Dark Perncil to answer the question in OMR sheet.
8. Indicate the correct answer by darkening one of the 4 or 5 responses provided.
9. Submit only OMR sheet to the invigilator
10. The value of $\sqrt[3]{(64)^{-2}}$
a) $\frac{1}{2}$
b) $\frac{1}{16}$
c) $\frac{1}{4}$
d) $\frac{1}{2}$
11. Find the value of $2 . \overline{6}-0 . \overline{9}$
a) $\frac{5}{3}$
b) $\frac{5}{7}$
C) $\frac{7}{5}$
d) $\frac{3}{5}$
12. Find $y=\sqrt{6+\sqrt{6+\sqrt{6+\ldots \infty}}}$
a) 6
b) 4
c) 2
d) 3
13. If $\left(\frac{2}{3}\right)^{6} \times\left(\frac{9}{4}\right)^{5}=\left(\frac{3}{2}\right)^{m+2}$ then the value of \boldsymbol{m} is
a) 9
b) -2
c) 2
d) 4
14. If $\left[\left\{\left(\frac{1}{7^{2}}\right)^{-2}\right\}^{-1 / 3}\right]^{\frac{1}{4}}=7^{m}$, then find the value of m.
a) $\frac{-2}{3}$
b) $\frac{-1}{3}$
c) $\frac{-6}{5}$
d) $\frac{3}{2}$
15. Express $0.12 \overline{3}$ in $\frac{p}{q}$ form?
a) $\frac{100}{37}$
b) $\frac{37}{300}$
c) $\frac{37}{1000}$
d) $\frac{37}{10}$
16. If $\mathbf{x}=9-4 \sqrt{5}$ find the value of $\sqrt{x}-\frac{1}{\sqrt{x}}$
a) -3
b) -5
c) -4
d) -6
17. Find the value of 'a' in the following :
$\frac{6}{3 \sqrt{2}-2 \sqrt{3}}=3 \sqrt{2}-a \sqrt{3}$
a) -3
b) -1
c) -2
d) -4
18. If the three vertices of a rectangle taken in order are the points (2,-2), $(8,4)$ and $(5,7)$. The co-ordinates of the fourth vertex is -
a) $(1,1)$
b) $(1,-1)$
c) $(-1,1)$
d) None of these
19. Find the ratio in which the point $\left(\frac{1}{2}, 6\right)$ divides the line segment joining the points $(3,5)$ and $(-7,9)$.
a) $1: 2$
b) $1: 5$
c) $1: 3$
d) $1: 7$
20. The centroid of a triangle, whose vertices are $(2,1),(5,2)$ and (3,4) is -
a) $\left(\frac{8}{3}, \frac{7}{3}\right)$
b) $\left(\frac{10}{3}, \frac{7}{3}\right)$
c) $\left(-\frac{10}{3}, \frac{7}{3}\right)$
d) $\left(\frac{10}{3},-\frac{7}{3}\right)$
21. Find the area of the circle whose centre is $(-1,-2)$ and (3 , 4) is a point on the circle
a) 42π sq unit
b) 32π squnit
c) 25π squnit
d) 52π squnit
22. The quadrilateral, whose vertices are ($-1,1$), ($0,-3$), (5,2) and $(4,6)$ is
a) a square
b) a rectangle
c) a rhombus
d) a parallelogram
23. Determine the ratio in which the point $P(a,-2)$ divides the join of $A(-4,3)$ and $B(2,-4)$. then find the value of a.
a) $\frac{3}{7}$
b) $\frac{1}{7}$
C) $\frac{2}{7}$
d) $\frac{5}{7}$
24. The points of triangle are $(\mathbf{a}, \mathrm{a}),(-\mathrm{a},-\mathrm{a})$ and $(-\sqrt{3 a}, \sqrt{3 a})$ than find the area of triangle.
a) $4 \sqrt{3} a^{2}$ sq units
b) $2 \sqrt{3} a^{2}$ squnits
c) $6 \sqrt{3} a^{2}$ squnits
d) $8 \sqrt{3} a^{2}$ squnits
25. The co-ordinates of the mid-point of the line joining the points $(3 p, 4)$ and $(-2,2 q)$ are $(5, p)$. Find the value of the p and q.
a) 2,3
b) 2,4
c) 2,5
d) 4,2
26. The point $(0,-2)$ lies on
a) +ve X-axis
b) +ve Y - axis
c) -ve X-axis
d) -ve Y-axis
27. If the value of mode and mean is 60 and 66 respectively, then find the value of median .
a) 24
b) 94
c) 54
d) 64
28. If the mean of the numbers $27+x, 89+x, 107+x, 156+$ x is 82 , then the mean of $130+x$,
$126+x, 68+x, 50+x, 1+x$ is -
a) 75
b) 157
c) 82
d) 80
29. In a class of 100 students there are $\mathbf{7 0}$ boys whose average marks in a subject are 75 . If the average marks of the complete class are 72, then the average marks of the girls is -
a) 73
b) 65
c) 68
d) 74
30. Find the value of k from the following data if mean of the given data is 16.

x	5	10	15	20	25
f	2	8	k	10	5

a) 10
b) 15
c) 20
d) 25
22. If \bar{x} is the mean of $x_{1}, x_{2}, \ldots x_{n}$ then for $a \neq 0$, the mean of $a x_{1}, a x_{2}, \ldots . a x_{n}, \frac{x_{1}}{a}, \frac{x_{2}}{a}, \ldots . ., \frac{x_{n}}{a}$ is
a) $\left(a+\frac{1}{a}\right) \bar{x}$
b) $\left(a+\frac{1}{a}\right) \frac{\bar{x}}{2}$
c) $\left(a+\frac{1}{a}\right) \frac{\bar{x}}{n}$
d) $\frac{\left(a+\frac{1}{a}\right) \bar{x}}{2 n}$
23. Find the area of a triangle, length of whose sides are 3 cm , 4 cm , and 5 cm .
a) $2 \mathrm{~cm}^{2}$
b) $4 \mathrm{~cm}^{2}$
c) $6 \mathrm{~cm}^{2}$
d) $8 \mathrm{~cm}^{2}$
24. Mean of 20 observations is $\mathbf{1 5 . 5}$ Later it was found that the observation 24 was misred as 42 . The corrected mean is :
a) 14.2
b) 14.8
c) 14.0
d) 14.6
25. The diameter of a garden roller is 1.4 m and it is $\mathbf{2 ~ m}$ long. How much area will it cover in 5 revolutions =
a) $44 \mathrm{~m}^{2}$
b) $54 \mathrm{~m}^{2}$
c) $74 \mathrm{~m}^{2}$
d) $84 \mathrm{~m}^{2}$
26. The length of diagonal of a square whose area is 16,900 m^{2} is :
a) 130 m
b) $130 \sqrt{ } 2 \mathrm{~m}$
c) 169 m
d) 144 m
27. Find the volume of a right circular cylinder, if the radius (\mathbf{r}) of its base and height (h) are 7 cm and 15 cm respectively
a) $2130 \mathrm{~cm}^{3}$
b) $2310 \mathrm{~cm}^{3}$
c) $2220 \mathrm{~cm}^{2}$
d) $4220 \mathrm{~cm}^{3}$
28. The volume of a cone is $18480 \mathrm{~cm}^{3}$. If the height of the cone is 40 cm . Find the radius of its base.
a) 21 cm
b) 28 cm
c) 35 cm
d) 42 cm
29. Find the volume of a sphere whose surface area is 154 square cm.
a) $197.66 \mathrm{~cm}^{3}$
b) $187.66 \mathrm{~cm}^{3}$
c) $179.66 \mathrm{~cm}^{3}$
d) $177.66 \mathrm{~cm}^{3}$
30. If the radius of a circle is $\frac{7}{\sqrt{ } \pi} \mathrm{~cm}, \mathrm{t}$ hen the area of the circle is:
a) $154 \mathrm{~cm}^{2}$
b) $\frac{49}{\pi} \mathrm{~cm}^{2}$
c) $22 \mathrm{~cm}^{21}$
d) $49 \mathrm{~cm}^{2}$
31. A cylindrical pillar is 50 cm in diametere and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of Rs. $\mathbf{1 2 . 5 0}$ per \mathbf{m}^{2}.
a) Rs. 65.75
b) Rs. 68.75
c) Rs. 70.75
d) Rs. 56.75
32. The total surface area of a cube is $486 \mathrm{~cm}^{2}$. Find its volume.
a) $715 \mathrm{~cm}^{3}$
b) $725 \mathrm{~cm}^{3}$
c) $700 \mathrm{~cm}^{3}$
d) $729 \mathrm{~cm}^{3}$
33. A quadrilateral $A B C D$ is inscribed in a circle such that $A B$ is a diameter and $\angle A D C=130^{\circ}$

Find $\angle B A C$.
a) 60°
b) 50°
c) 40°
d) 20°
34. The region between a chord and either of the arcs is called
a) an arc
b) a sector
c) a segment
d) a semicircle
35. If P is a point in the interior of a circle with centre O and radius r, then
a) $O P=r$
b) $\mathrm{OP}>\mathrm{r}$
c) $O P \geq r$
d) $\mathrm{OP}<\mathrm{r}$
36. When two circles intersect at points A and B with $A C$ and AD being the diameters of the first and second circle then the points B, C and D are
a) concurrent
b) circumcentre
c) orthocentre
d) collinear
37. If $P Q$ is a chord of a circle with radius r units and R is a point on the circle such that $\angle P R Q=90^{\circ}$, then the length of $P Q$ is
a) r units
b) $2 r$ units
c) $\frac{r}{2}$ units
d) $4 r$ units
38. In the following figure, chords $A B$ and $C D$ of a circle when produced meet at P. If $\angle A P D=35^{\circ}$ and $\angle B C D=25^{\circ}$ then $\angle A D C$ is equal to \qquad

a) 60°
b) 70°
c) 50°
d) 120°
39. In the given figure, if $O A=5 \mathrm{~cm}, A B=8 \mathrm{~cm}$ AND $O D$ is perpendicular to $A B$, then $C D$ is equal to \qquad

a) 2 cm
b) 3 cm
c) 4 cm
d) 5 cm
40. In the given figure if $A O B$ is a diameter of the circle and $\mathbf{A C}=\mathbf{B C}$, then $\angle C A B$ is equal to

a) 30°
b) 60°
c) 90°
d) 45°
41. In the given figure, $A B \| C D$ and $\angle A B C=30^{\circ}, \angle O D C=70^{\circ}$ find x.

a) 260°
b) 360°
c) 280°
d) 320°
42. In figure, $\angle D B A=132^{\circ}$ and $\angle E A C=120^{\circ}$. Then which one is correct of the following.

a) $A B=A C$
b) $\mathrm{AB}>\mathrm{AC}$
c) $A B<A C$
d) $A C>A B$
43. In a $\triangle A B C \angle A=45^{\circ}, \angle B=70^{\circ}$. Then the shortest and the largest sides of the triangle are
a) $A B, B C$
b) $B C, A C$
c) $A B, A C$
d) None
44. In the fig. given below find $\angle Z$.

a) 40°
b) 110°
c) 45°
d) None
45. The correct statement out of the following is

46. In the given figure $A D, B E$ and $C F$ are medians and G is the centroid of $\triangle A B C$. if ar $\triangle A B C=132$ sq. units then ar. $\triangle D G E=\ldots$.

a) 11 sq. units
b) 44 sq. units
c) 22 sq. units
d) None of the above
47. Each angle of an equilateral triangle is
a) 60°
b) 45°
c) 90°
d) 30°
48. If $C D \| A B$, Then y is equal to

a) 100°
b) 40°
c) 60°
d) 80°
49. If angles P, Q, R and S of the quadrilateral PQRS, taken in order, are in the ratio $3: 7: 6: 4$ then PQRS is a
a) rhombus
b) parallelogram
c) trapezium
d) kite
50. In the given figure AO and DO are the bisectors of the $\angle A$ and the $\angle D$ of the quadrilateral $\mathbf{A B C D}$. Then the $\angle A O D$ is \qquad

a) 67.5°
b) 77.5°
c) 87.5°
d) 99.75°
51. If $\frac{3+\sqrt{5}}{4-2 \sqrt{5}}=p+q \sqrt{5}$. where \boldsymbol{p} and \boldsymbol{q} are rational numbers, find the values of p and q.
a) $-11 / 2,-5 / 2$
b) $-7 / 2,-3 / 2$
c) $-3 / 2,-9 / 2$
d) $-11 / 2,-9 / 2$
52. In figure $A B C D$ is a parallelogram,
$A E \perp D C$ and $C F \perp A D$. If $\mathbf{A B}=\mathbf{1 6} \mathbf{c m}$,
$A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$ find $A D$.

a) 5.10 cm
b) 8.8 cm
c) 10.2 cm
d) 12.8 cm
53. If in the given figure $C E \| D B$, then the value of \mathbf{x} is

a) 75°
b) 30°
c) 85°
d) 45°
54. Supplement angle of

a) 122.7°
b) 131.7°
c) 132.7°
d) 132.4^{0}
55. In the figure, $\mathbf{A D}$ is the bisector of $\angle A$ of $\triangle A B C$ then

a) $A B>B D$
b) $A B=B D$
c) $A B<B D$
d) none
56. The number $(6+\sqrt{2})(6-\sqrt{2})$ is
a) rational
b) irrational
c) can't say
d) none
57. In the figure, $\angle a=115^{\circ}$. Then $\angle g=$

a) 65°
b) 75°
c) 115°
d) 120°
58. In the given figure $P Q \| R S \angle P A B=70^{\circ}, \angle A C S=110^{\circ}$ Then $\angle B A C$ is

a) 40°
b) 70°
c) 110°
d) 30°
59. From the adjoining figure $x=30^{\circ}$. The value of y^{0} is

a) 25°
b) 24^{0}
c) 36°
d) 45°
60. Find α and β if $x+1$ and $x+2$ are factors of $p(x)=x^{3}+3 x^{2}$ $-2 \alpha x+\beta$
a) $-1,2$
b) $-1 ; 0$
c) $-2 ;-3$
d) None
61. Solve : $0.645 \times 0.645+2 \times 0.645 \times 0.355+0.355 \times 0.355$
a) 4
b) 3
c) 2
d) 1
62. Factors of $x^{2}-7 x+12$ are
a) $(x-3)(x+4)$
b) $(x-3)(x-4)$
c) $(x+3)(x-4)$
d) $(x+3)(x+4)$
63. If $x^{2}-x-42=(x+k)(x+6)$ then the value of k is
a) 6
b) -6
c) 7
d) -7
64. Factorize : $x^{6}-7 x^{3}-8$
a) $\left(x^{3}+8\right)\left(x^{3}-1\right)$
b) $\left(x^{3}-8\right)\left(x^{3}-1\right)$
c) $\left(x^{3}-8\right)\left(x^{3}+1\right)$
d) None
65. If $\left(x^{2}+3 x+5\right)\left(x^{2}-3 x+5\right)=m^{2}-n^{2}$ then $\mathrm{m}=$ \qquad
a) $x^{2}-3 x$
b) $3 x$
c) $x^{2}+5$
d) none
66. The value of $50^{3}-20^{3}-30^{3}$ is
a) 90000
b) 270000
c) 30000
d) None of the above
67. If $x+\frac{1}{x}=4$ then the value of $x^{3}+\frac{1}{x^{3}}$ is
a) 64
b) 76
c) 52
d) None of the above
68. If $(x+2)(x-5)(x-6)(x+1)=144$, then $x=\ldots \ldots$
a) $-2,7,-3$
b) $2,-3,7$
c) $2,-7,3$
d) None of the above
69. If $7^{1+\mathrm{x}}+7^{1-\mathrm{x}}=50$, then $\mathrm{x}=$
a) ± 2
b) ± 3
c) ± 1
d) ± 4
70. What must be subtracted from $\frac{7 x}{x^{2}+x-12}$ to get $\frac{4}{x+4}$?
a) $\frac{4}{x-3}$
b) $\frac{3}{x+3}$
c) $\frac{3}{x-3}$
d) None of the above
71. In a $\triangle A B C$, if $\angle A=\angle B+\angle C$ then $\angle A=$ \qquad
a) 60°
b) 45°
c) 90°
d) none
72. If the two legs of a right angled Δ le are equal and the square of the hypotenuse is $\mathbf{1 0 0}$ then the length of each leg is
a) 10
b) $5 \sqrt{2}$
c) $10 \sqrt{2}$
d) none
73. In the following figure if $\mathbf{A B}=\mathbf{A C}$ then find $\angle x$.

a) 80°
b) 70°
c) 60°
d) 110°
74. If two angles in a Δ le are 65° and 85°, then the third angle is
a) 30°
b) 45°
c) 60°
d) 90°
75. In a $\triangle A B C$ If $A B^{2}=B C^{2}+A C^{2}$, then the right angle is at
a) A
b) B
c) C
d) none

KEY TO MODEL PAPER - I

1. b	2. a		4. c	5. b	6. b
7. C	8. c		10. c	11. b	12. d
13. d	14. c	15. b	16. d	17. d	18. d
19. a	20. b	21. b	22. b	23. c	24. d
25. a	26. b	27. b	28. a	29. c	30. d
31. b	32. d	33. c	34. C	35. d	36. d
37. b	38. a	39. a	40. d	41. a	42. b
43. b	44. C	45. c	46. a	47. a	48. C
49. c	50. c	51. a	52. d	53. c	54. c
55. a	56. a	57. c	58. a	59. b	60. b
61. d	62. c	63. d	64. c	65. c	66. a
67. c	68. d	69. c	70. a	71. c	72. b
73. b	74. a	75. c			

ADVANCED MATHS TEST-II

Code : 1192 FINALS

Max. Marks : 60 Duration : 60 Mins.

General Instructions :

1. Please find the separate Answer Sheets along with the question paper.
2. Mention your Test Code, Student ID, Name, Class, Section, Contact no. and School Name on the Answer Sheet as per Question Paper and Hall Ticket.
3. This question paper contains VI sections, duration is 60 minutes.
4. Please read the instructions carefully before attempting the question.
5. Answer questions in Answer Sheet only.
6. Don't write or tick anything on the question paper.
7. Use only Black or Blue Ball Point Pen to answer the question in Answer Sheet.
8. Submit only answer sheet(s) to the invigilator.

SECTION - I

$10 \times 1=10$
DIRECTIONS : (1-10) - Complete the following statements with an appropriate word/term to be written in the answer sheet.

1. Value of a is___ $\frac{\sqrt{3}-1}{\sqrt{3}+1}=a+b \sqrt{3}$
2. The co-ordinates of the mid - point of the line segement joining two points $P\left(x_{1}, y_{1}, z_{1}\right) \& Q\left(x_{2}, y_{2}, z_{2}\right)$ are (\qquad)
3. The median of a set of 9 distinct observations is 20.5 . If each of the largest 4 observation of the set is increased by 2 , then the median of the new set \qquad .
4. The side of equilateral triangle is ' a ' units then the area of triangle is \qquad sq.units.
5. In the given figure, $A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$ and $\angle A B C=50^{\circ}$, then $\angle B D C$ \qquad .

6. In figure, sides QP and RQ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, then $\angle P R Q$ \qquad

7. The figure formed by joining the mid- points of the consecutive sides of a quadrilateral is \qquad
8. If l and m are intersecting lines, $l \| p$ and $m \| q$, then p and q are \qquad .
9. $\frac{4}{9} a^{2}+b^{2}+\frac{4}{3} a b$ factorise \qquad .
10. In a $\triangle P Q R, \mathrm{PQ}=\mathrm{PR}$ and $\angle Q$ is twice that of $\angle P$. then $\angle Q=$ \qquad .

SECTION - II

$10 \times 1=10$
DIRECTIONS: (11-20) - Read the following statements and write true or false with reasons or solutions; in the answer sheet.
11. $\frac{\sqrt{7}}{3 \sqrt{3}}$, in rational denominator is 3 .
12. The distance between the two points $A(x, 5)$ and $B(0,-3)$ is $4 \sqrt{5}$ unit then $x= \pm 4$
13. $50,70,50,70,80,70,70,80,70,50$ the observations median is 50 .
14. Ratio of volumes of two cylinders with equal radii are $\mathrm{H}: \mathrm{h}$
15. Angle in a semi circle is a right angle.
16. If a, b and c are the sides of $\mathrm{a} \Delta l e$, then $\mathrm{b}>\mathrm{c}+\mathrm{a}$ is
17. ABCD is a rhombus, If $\angle A C B=40^{\circ}$ then $\angle A D B$ is also 40°
18. A line which intersects two or more lines at different points is called intersecting lines.
19. When $x^{11}+1$ is divided by $x+1$ then the remainder is 11 , since x is odd.
20. In a $\triangle A B C$, If $\angle B$ an obtuse angle, then the longest side is AC

SECTION - III
 $10 \times 1=10$

DIRECTIONS: (21-30) - Each question contains statements given in two columns which have to be matched. Match the statements ($21,22, \ldots 30$) in column I with statements (A,B,...T) in column II . Arrange the matched statements in order and write in the answer sheet.

Column - I

21) $\frac{-3}{17}$ is a
22) If the point (x, y) is equidistant from the
points ($a+b, b-a$) and ($a-b, a+b$)
then the equation is.
23) If $6,4,8$, and 3 occur with frequencies 4,2,5 and 1 respectively, then the arithmetic mean is
24) The ratio of the volume and surface area of a sphere of unit radius
25) Distance of a chord $A B$ of a circle
E) 126°
from the centre is 12 cm and length of the chord is 10 cm .
The diameter of the circle is \qquad cm .
(26) In a $\triangle A B C$ If $2 \angle A=3 \angle B=6 \angle C$
F) fraction
then $\angle A, \angle B, \angle C$ are \qquad .
26) $A B C D$ is a parallelogram in which
G) $a x=b y$
$\angle D A B=75^{\circ}$ and $\angle D B C=60^{\circ}$
then $\angle C D B=$ \qquad
27) In triangle $A B C$.
H) 6.25

the exterior angle $\angle A C D=$ \qquad .
28) Divide $12 x^{4}-15 x^{3}+6 \sqrt{3 x}$ by $3 \mathrm{x} \quad$ I) $1: 2$
29) If the angles of a $\Delta l e$ are in the ratio
J) 26 cm $1: 2: 7$ then the obtuse angle is
K) $30^{\circ}, 60^{\circ}, 90^{\circ}$
L) 25°
M) $\angle A+\angle C$
N) $4 x^{3}+5 x^{2}-\sqrt{3}$
O) 136°
P) Rational number
Q) $a y=b x$
R) 6.75
S) $1: 3$
T) 16 cm

SECTION - IV

Directions : (31-40) - Identify the correct answer from the given options and write in the answer sheet.
31. Express 0.2434343 \qquad then $\frac{p}{q}=$
a) $\frac{241}{990}$
b) $\frac{241}{900}$
c) $\frac{241}{1000}$
d) $\frac{241}{100}$
32. The line $x+1=0$ is \qquad
a) parallel to y - axis
b) parallel to x - axis
c) passing through the origin
d) none of these
33. The mean of 11 observations is 17.5 . If an observation 15 is deleted, the mean of the remaining observations is
a) 16
b) 17.75
c) 17.5
d) 17.25
34. The sides of a triangular plot are in the ratio $3: 5: 7$ and its perimeters is 300 m . then if area is
a) $1200 \sqrt{3} m^{2}$
b) $1300 \sqrt{3} \mathrm{~m}^{2}$
c) $1400 \sqrt{3} m^{2}$
d) $1500 \sqrt{3} \mathrm{~m}^{2}$
35. An equilateral $\Delta l e \mathrm{PQR}$ is inscribed in a circle with centre O . Find $\angle Q O R$.
a) 60°
b) 120°
c) 30°
d) None
36. In $\triangle A B C, A B=A C$ and AD is perpendicular to BC . State the property by which $\triangle A D B \cong \triangle A D C$.
a) SAS property
b) SSS property
c) RHS property
d) ASA property
37. In a rhombus $\mathrm{ABCD}, \angle A=60^{\circ}$ and $\mathrm{AB}=6 \mathrm{~cm}$. then the diagonal $B D$ is.
a) $2 \sqrt{3} \mathrm{~cm}$
b) 6 cm
c) 12 cm
d) Insufficient data
38. Can $6 \mathrm{~cm}, 5 \mathrm{~cm}$ and 3 cm form a triangle?
a) Yes
b) No
c) Sometimes
d) None
39. If $x+\frac{1}{x}=a+b$ and $x-\frac{1}{x}=a-b$ then
a) $a b=1$
b) $a=b$
c) $a b=2$
d) $a+b=0$
40. A triangle always has
a) exactly one acute angle
b) exactly two acute angles
c) at least two acute angles
d) none of these

SECTION - V

$10 \times 1=10$
DIRECTIONS: (41-50) - Choose the correct answers (More than one correct answer) from the given options and write in the answer sheet.
41. Which of the following is equal to x ?
a) $x^{\frac{12}{7}}-x^{\frac{5}{7}}$
b) $\sqrt[12]{\left(x^{4}\right)^{\frac{1}{3}}}$
c) $\left(\sqrt{x^{3}}\right)^{\frac{2}{3}}$
d) $x^{12 / 19} \times x^{7 / 19}$
42. Which of the following given vertices of a triangle has its centroid as $\mathrm{O}(2,3)$?
a) $A(1,3), B(2,4) C(3,2)$
b) $P(0,3), Q(2,4), R(3,2)$
c) $X(0,2),(2,1), Z(4,6)$
d) none of these
43. Which of the following is/are measure of central tendency?
a) mean
b) median
c) Variance
d) mode
44. The volume of the two spheres are in the ratio 64: 27 . The difference of their surface areas, if the sum of their radii is 7 , is
a) $28 \pi \mathrm{~cm}^{2}$
b) $88 \mathrm{~cm}^{2}$
c) $64 \pi \mathrm{~cm}^{2}$
d) $36 \pi \mathrm{~cm}^{2}$
45. Two circles are drawn with sides PQ and PR of a triangle PQR as diameters, Circles intersect at a point S . Then
a) $\angle P S Q$ and $\angle P S R$ form a linear pair angles.
b) $\angle P S Q$ and $\angle P S R$ are complementary angles.
c) $\angle P S Q$ and $\angle P S R$ are supplementary angles.
d) points Q, S, R are collinear points.
46. Which of the following is/are correct?
a) If two sides of a triangle are unequal, the larger side has the greater angle opposite to it
b) The sum of any two sides of a triangle is greater than its third side.
c) If all the line segments that can be drawn to a given line from an external point, the perpendicular line segment is the shortest.
d) If all the three sides of a triangle are equal, it is called a scalene triangle.
47. Choose the correct statements among the following given options.
a) Area of a parallelogram is the product of any of its sides and the corresponding altitude.
b) The area of a triangle is half the product of any of its sides and the corresponding altitude.
c) The area of a trapezium is half the product of its height and the sum of the parallel sides.
d) A diagonal of a parallelogram divides it into two triangles of distinct areas.
48. Which of the following is/are Euclid's postulates?
a) A straight line may be drawn from any one point to any other point.
b) A circle can be drawn with any centre and any radius.
c) A terminated line cannot be produced indefinitely.
d) All right angles are never equal to one another.
49. Which of the following is/are not false?
a) Highest power of the variable in a polynomial is the degree of polynomial.
b) Degree of zero polynomial is always defined.
c) A polynomial of degree one is called a linear polynomial.
d) A polynomial of degree two is called a constant polynomial.
50. Two chimneys 18 m and 13 m high stand upright in a ground. If their feet are 12 m apart, then the distance between their tops is
a) 5 m
b) 31 m
c) 13 m
d) 18 m

SECTION - VI

$10 \times 1=10$

Assertion \& Reason

DIRECTIONS : (51-60) - Each of these questions contains an Assertion followed by reason. Read them carefully and answer the question on the basis of following options. You have to select the one that best describes the two statements and write in the answer sheet.
a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
c) If Assertion is correct but Reason is incorrect.
d) If Assertion is incorrect but Reason is correct.
51. Assertion: A rational number between $\frac{1}{3}$ and $\frac{1}{2}$ is $\frac{5}{12}$.

Reason: Rational number between two numbers a and b is $\sqrt{a b}$
52. Assertion: The ratio in which the segment joining the points($3,10)$ and $(0,-8)$ is divided by $(-1,6)$ is $2: 7$.

Reason: If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ are two points. Then the point $C(x, y)$ such that C divides $A B$ internally in the ratio $K: 1$ is given by $x=\frac{K x_{2}+x_{1}}{K+1}, y=\frac{K y_{2}+y_{1}}{K+1}$
53. Assertion: Mode of the given data 110, 120, 130, 120, 110,140, $130,120,140,120$, is 120

Reason: The observation that occurs most frequenctly, i.e., the observation with maximum freequency is called mode.
54. Assertion: The total surface area of a cone whose radius is $\frac{r}{2}$ and slant height $2 l$ is $(\pi) r\left(l+\frac{r}{4}\right)$.

Reason: Total surface area of cone is $\pi r(l+r)$ where r is radius and l is the slant height of the cone.
55. Assertion: If P and Q are any two points on a circle, then the line segment $P Q$ is called a chord of the circle.

Reason: Equal chords of a circle subtend equal angles at the centre.
56. Assertion: If $A B C \cong P Q R$ and area $(\triangle A B C)=10 s q$. units, then area $(\triangle P Q R)=20 s q$. units.

Reason: Two congruent figures have equal areas.
57. Assertion: If the diagonal of a parallelogram $A B C D$ are equal, then $\angle A B C=90^{\circ}$.

Reason: If the diagonals of a parallelogram are equal, it becomes a rectangle.
58. Assertion: If two internal opposite angles of a triangle are equal and external angle is given to be 110°
,then each of the equal internal angle is 55°.

Reason: A triangle with one of its angle 90°, is called a right angle triangle
59. Assertion: If $f(x)=x^{4}+x^{3}-2 x^{2}+x+1$ is divided by $(\mathrm{x}-1)$, then its remainder is 2.

Reason: If $p(x)$ be a polynomial of degree greater than or equal to one, divided by the linear polynomial $x-a$, then the remainder is $p(-a)$.
60. Assertion: All the points $(1,0),(-1,0),(2,0)$ and $(5,0)$ lie on the x - axis.

Reason: Equation of the x-axis is $y=0$

SOLUTIONS TO MODEL PAPER - II

SECTION - I

Fill in the Blanks

1) 2
2) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
3) 20.5
4) $\frac{\sqrt{3 a^{2}}}{4}$
5) 80°
6) 65°
7) parallogram
8) intersecting
9) $\left(\frac{2 a}{3}+b\right)\left(\frac{2 a}{3}+b\right)$
10) 72^{0}

SECTION - II

True / False

11) False	12) True	13) False	14) True
15) True	16) False	17) False	18) False
19) False	20) True		

SECTION - III Match the Following

21) $\rightarrow p$
22) $\rightarrow Q$
23) $\rightarrow \mathrm{H}$
24) $\rightarrow S$
25) \rightarrow J
26) $\rightarrow A$
27) $\rightarrow B$
28) $\rightarrow C$
29) $\rightarrow D$
30) $\rightarrow E$

SECTION - IV

Multiple Choice Questions

31) a	32) a	33) b	34) d
35) b	36) c	37) b	38) a
39) a	40) c		

SECTION - V

More than one correct answers
41) c, d
42) a, c
43) a, b, d
44) a, b
45) a, c, d
46) a, b, c
47) a, b, c
48) a, b
49) a, c
50) c

SECTION - VI

Assertion \& Reason

51. c) If Assertion is correct but Reason is incorrect.
52. a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
53. a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
54. a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
55. a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
56. d) If Assertion is incorrect but Reason is correct.
57. a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
58. b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
59. c) If Assertion is correct but Reason is incorrect.
60. a) If both Assertion and Reason are correct and Reason is the Correct explanation of Assertion.
